Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Public Health ; 11: 1048087, 2023.
Article in English | MEDLINE | ID: covidwho-2257472

ABSTRACT

Objective: To compare the physiological health of Chinese children around the COVID-19 lockdown. Methods: We extracted data on children's anthropometric and laboratory parameters from May to November in both 2019 and 2020 from the Health Checkup Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China. Overall, 2162 children aged 3~18 years without comorbidities in 2019 and 2646 in 2020 were assessed. Mann Whitney U tests were used to compare differences between the above health indicators before and after COVID-19 outbreak. Quantile regression analyses adjusted for age, sex and body mass index (BMI) were also used in analysis. Chi-square tests and Fisher's exact tests were used for comparing differences of categorical variables. Results: Compared with children examined in 2019 before the outbreak, children in 2020 had a higher median z score of BMI for age (-0.16 vs. -0.31), total cholesterol (TC, 4.34 vs. 4.16 mmol/L), low density lipoprotein cholesterol (LDL-C, 2.48 vs. 2.15 mmol/L), high density lipoprotein cholesterol (HDL-C, 1.45 vs. 1.43 mmol/L) and serum uric acid (290 vs. 282 µmol/L), and a lower hemoglobin (Hb, 134 vs. 133 g/L), triglycerides (TG, 0.70 vs. 0.78 mmol/L) and 25(OH)D (45.8 vs. 52.2 nmol/L), all P < 0.05. No differences were identified for waist height ratio, blood pressure and fasting glucose (both P > 0.05). However, in regression models after adjusting, BMI, TC, LDL-C, blood glucose and sUA were positively correlated with year; while Hb, TG and 25(OH)D were negatively correlated with year (all P < 0.05). Accordingly, children in 2020 had a higher prevalence of overweight/obesity (20.6 vs. 16.7%, P < 0.001), hypercholesterol (16.2%vs. 10.2%, P < 0.001), high LDL-C (10 vs. 2.9%, P < 0.001), hyperuricemia (18.9 vs.15.1%, P = 0.002), vitamin D deficiency (22.6 vs. 8.1%, P < 0.001) and a lower prevalence of high TG (4.3 vs. 2.8%, P = 0.018) compared with children in 2019. Conclusion: In this real-world study, we found that long-term lockdown due to COVID-19 outbreak might cause adverse impact on children's metabolic health, which might increase their future risk of cardiovascular diseases. Thus, parents, health professionals, educationists, and caregivers should pay more attention to children's dietary pattern and lifestyle, especially in this new normal against COVID-19.


Subject(s)
COVID-19 , Lipids , Overweight , Pediatric Obesity , Child , Humans , Cholesterol, LDL , Communicable Disease Control , East Asian People , Lipids/blood , Uric Acid , Child, Preschool , Adolescent , Overweight/epidemiology , Pediatric Obesity/epidemiology
2.
Emerg Microbes Infect ; 11(1): 1488-1499, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1852834

ABSTRACT

The recent global pandemic was a spillover from the SARS-CoV-2 virus. Viral entry involves the receptor binding domain (RBD) of the viral spike protein interacting with the protease domain (PD) of the cellular receptor, ACE2. We hereby present a comprehensive mutational landscape of the effects of ACE2-PD point mutations on RBD-ACE2 binding using a saturation mutagenesis approach based on microarray-based oligo synthesis and a single-cell screening assay. We observed that changes in glycosylation sites and directly interacting sites of ACE2-PD significantly influenced ACE2-RBD binding. We further engineered an ACE2 decoy receptor with critical point mutations, D30I, L79W, T92N, N322V, and K475F, named C4-1. C4-1 shows a 200-fold increase in neutralization for the SARS-CoV-2 D614G pseudotyped virus compared to wild-type soluble ACE2 and a sevenfold increase in binding affinity to wild-type spike compared to the C-terminal Ig-Fc fused wild-type soluble ACE2. Moreover, C4-1 efficiently neutralized prevalent variants, especially the omicron variant (EC50=16 ng/mL), and rescued monoclonal antibodies, vaccine, and convalescent sera neutralization from viral immune-escaping. We hope to next investigate translating the therapeutic potential of C4-1 for the treatment of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/therapy , Humans , Immunization, Passive , Mutagenesis , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL